
Read the PR description and context
Before diving into the code, make sure you understand why the change is
happening. Check the issue, ticket, or task it's related to, and get the full picture
of what’s being solved.

Look at the overall diff
Get a sense of the scale of the changes. Are they within a reasonable size?
Does the structure of the diff make sense, or do you see any red flags at a
high level?

Review the logic, flow, and structure
Does the code follow project architecture patterns? Is the solution correct,
and could it be simplified? Are there any edge cases? Make sure both the
core logic and overall structure are sound before diving into minor details.

Ensure readability and maintainability
Good code should be easy to understand. Are variable names clear? Is the
function structure logical and easy to follow? Ensure future developers (including
yourself) can jump into this code later without confusion.

Check for test coverage
Has the developer added tests where needed? Do the tests cover the main
functionality and edge cases? If tests are missing or insufficient, flag this early on.

Look for unnecessary complexity
Is there any code that could be simplified or removed? Look for over-
engineering or logic that could be broken down into smaller, reusable pieces.

Check for performance considerations
Make sure the code doesn’t introduce unnecessary performance hits. Are
there areas where memory usage or speed could become an issue,
especially with large data sets or frequent calls?

Leave actionable, concise feedback
Be direct and clear with your feedback. Instead of just pointing out what's wrong,
offer suggestions or ask clarifying questions. Aim to help the author improve their
code without overwhelming them with vague comments.

Code Review Checklist

Ready to simplify & supercharge 
Git for your development team? Download GitKraken free!

https://www.gitkraken.com/

