
Onboarding
Developers to
Codebases:
A Hands-On Guide

1

It is absolutely awesome to have new people join your team. You’re going to be able to do
more, better, quicker. In the long run.

But there is always that angst associated with those first few weeks. Are they going to fit
in? Are they going to be effective? How do you make them effective?

Getting developers up-and-running with a codebase is a challenge. This is true whether
they are junior developers new to the company, or senior developers from another team in
the organization that need to understand your code. Either way, you need to make them
effective contributors to your codebase.

This used to be done with sitting down 1-on-1 with them and walking through everything.
But there is a better way to onboard–codebase maps and tours. You can visualize your
codebase for new team members, show them what they need to know quickly, and then
tailor a step-by-step walkthrough just for them.

In this guide we want to take you through how to do that, using maps and tours, and then
show you how to take things further with automation to make your team even more
effective.

Summary

Onboarding Developers
to Codebases:
A Hands-On Guide

https://www.codesee.io/onboarding

2

3 Barriers to Developer or Contributor Productivity

1. Not Understanding the Architecture of the Codebase
2. Slow Code Review Process
3. Lack of Organizational Knowledge

Make a Codebase Map

What is a codebase map
Why should you create a codebase map?

Customize Your Codebase Map

Create a Codebase Tour
What is an interactive codebase tour

Why should I create a codebase tour?
Customize Your Codebase Tour

Share Your Map and Tour

Use Review Maps When You Make Code Changes

Write Code Automations to Share Organizational Knowledge

Next Steps

3

3
4
4

5

 5
6

8

12

12
13
14

15

16

16

18

Onboarding Developers
to Codebases:
A Hands-On Guide

3

So what slows everything down in those first few weeks? It can really be condensed down
to three things:

This is the most obvious issue. New devs just don’t know the codebase. If the new
developer is familiar with the specific framework they’ll know the rough architecture, but
every codebase has its own patterns. Not understanding the design then leads to
underlying problems:

Inconsistent code quality: The developer may not be aware of the best practices
or patterns used in the codebase, leading to inconsistencies in code quality and
structure.

Increased risk of bugs: Without understanding the architecture, the developer
may make changes that introduce new bugs or break existing functionality.

Slow development: A lack of understanding of the architecture can result in the
developer taking longer to complete tasks or making unnecessary changes,
slowing down the development process.

Poor code maintainability: Changes made without an understanding of the
architecture can result in code that is difficult to maintain, requiring more time and
effort to update or fix in the future.

To avoid these problems, it is important to provide developers with access to the
necessary information and resources to understand the architecture of the codebase.

3 Barriers to Developer or
Contributor Productivity

1. Not Understanding the Architecture of
the Codebase

4

In an analysis of 1M code reviews, Linearb found that the average time to review was
more than four days. Anything that can speed up the process needs to be done. When
developers, junior or senior, are new to a codebase, review cycles get longer

If the new developer is junior and pushing code, they might not understand the
dependencies in the codebase and the implications of their PR. Additionally, the
junior developer may also be less familiar with the development process and best
practices, which can result in suboptimal solutions being suggested or missed
issues being overlooked.

If the new developer is senior and reviewing code, then they have to grasp the
codebase themselves first before they can start to help others. They will have
difficulty in understanding the purpose of specific parts of the code, and an initial
inability to identify areas of the code that may require attention or improvement.
The senior dev will spend more time understanding the code and its implications
before providing feedback.

New developers lack organizational knowledge. Even if they are coming from a different
part of the company, they’ll still not know exactly how your team works. This results in
several problems, including

Inefficient work: The lack of understanding of how the organization operates can
result in the person taking longer to complete tasks, making unnecessary changes,
or missing important details.

Decreased collaboration: Without understanding the organizational structure, goals,
and processes, it can be difficult for the person to effectively collaborate with others
or understand their roles and responsibilities.

Poor decision making: The lack of organizational knowledge can result in poor
decision making, as the person may not fully understand the context or impact of
their actions.

Increased risk of mistakes: The lack of understanding of organizational policies,
procedures, and systems can increase the risk of mistakes being made.

2. Slow Code Review Process

3. Lack of Organizational Knowledge

https://linearb.io/blog/why-estimated-review-time-improves-pull-requests-and-reduces-cycle-time/

5

So you need to give people more knowledge about your organization and architecture,
and you can do that through codebase maps and tours. Over a quarter, Distribute Aid
saved an estimated 72 hours in onboarding time with GitKraken code visibility, and
received more contributions to its projects than ever before—9 pull requests from new
contributors.

Codebase maps are so much more than just code diagrams. Maps provide developers and
teams a means of sharing key information about code—all within the context of the
complete codebase.

A codebase map is a visual representation of the structure and organization of a codebase.
It helps developers to understand the relationships between different components of the
code and how they fit together, making it easier to navigate the codebase and identify
areas of interest.

They can be used to represent different aspects of the codebase, such as the relationships
between classes, modules, and functions, or the flow of data and control through the code.

By providing a high-level view of the codebase, codebase maps can help developers to
quickly and easily understand the code, reducing the time and effort required to familiarize
themselves with new codebases or understand complex systems. They can also help to
identify potential issues or areas of the code that may require attention or improvement,
improving the overall quality and reliability of the code.

What is a codebase map?

Make a Codebase Map

https://www.codesee.io/case-studies/distribute-aid-significantly-cuts-onboarding-time-with-codesee

6

“Using GitKraken to take on a new codebase, I’m able to save up to 4
hours a week across my open-source projects.”

Creating a codebase map can provide several benefits, including

Improved code understanding: A codebase map can help developers to quickly and
easily understand the structure and organization of a codebase, reducing the time
and effort required to familiarize themselves with new codebases or understand
complex systems.

Increased collaboration: By providing a shared understanding of the codebase,
codebase maps can help to improve collaboration between developers, making it
easier to work together on complex systems.

Better code maintainability: Codebase maps can help to identify areas of the code
that may require attention or improvement, improving the overall quality and
maintainability of the code.

Faster bug fixing: By providing a clear understanding of the relationships between
different components of the code, codebase maps can help developers to identify
and fix bugs more quickly.

Reduced development time: A clear understanding of the codebase can help
developers to complete tasks more quickly, reducing the time required to develop
new features or fix existing issues.

Improved code reviews: Codebase maps can help to make code reviews more
efficient, by making it easier to identify potential issues or the impact of changes.

Creating a codebase map improves the quality, maintainability, and efficiency of a
codebase, making it easier to develop high-quality products. It also makes people
quicker. As Joan M. Davis told us:

Joan M. Davis

Why should you create a codebase map?

7

Let’s quickly go through what a codebase map looks like, particularly one focused on
onboarding new developers. Here’s an example onboarding codebase map:

This map is for a Remix project. At a glance, a new developer can:

This requires only a 5-minute setup but can save hours (or days) of onboarding time
further down the road. Let’s go through how you can set up a codebase map and tour
on your own codebase to help new engineers onboard properly.

Understand the design of the codebase. It’s clear how the code is organized. This is
a route and component-based architecture with different concerns separated into
different folders.

See where the docs are to help them get started and orient them into the code.

Follow the walkthrough to know the steps they need to follow to work on the code.

https://app.codesee.io/maps/public/f5dcb920-ee8f-11ec-a5b3-bb55880b8b59

8

We can color-code our codebase map according to what an onboarding developer would
need to know.

Where does the main ‘work’ of the application get done? The main ‘work’ is colored light
green. The ‘Core’ modules are in containers/, images/, and naviofile/. Now the new
developer knows these are where the fun happens and can explore from there,
expanding these folders to see individual files:

We won’t go through the installation process here, you can see that in our docs. Here we’re
going to use the Navio project as an example. Let’s say we’re using this within our
organization to create and manage linux containers and it is an integral part of our
workflow. Any new engineer has to understand this codebase. What we want them to
know immediately is

Where does the main ‘work’ of the application get done?
What imports does this main piece of code rely on?
Where do testing files live?
Where do configuration and package management files live?

Let’s customize our codebase map to help highlight these factors:

Customize Your Codebase Map

https://docs.codesee.io/docs/installation
https://github.com/viniciusbds/navio
https://app.codesee.io/maps/public/10de8a50-1821-11ec-b615-23ef4b16c81f

9

That’s still a lot of files to understand, but at least the new developer knows these are the
core. They can then delve into the documentation (colored light blue) to learn more.

What imports does this main piece of code rely on? Now we know the core files, what are
the dependencies? Here, we’ve color-coded ‘Dependency’ as purple. That coloring, plus the
arrows going from green to purple, make it easy to see how important pkg/ is to the core
files. Again, we can expand this out to see what files are in the folder:

10

We’ve got some utils, a logger, and some io. Plus a README. Excellent news for the new
developer. Wonder how long it would have taken them to find that otherwise? Let’s open
this up further to see more about these files:

11

Oh, awesome, we now also have the answer to our next question.

Where do testing files live? In this design, tests live next to files in the same folder– no
separate test folder. Finally, we want to know,

Where do configuration and package management files live? We can go back to our map
legend, see config files are colored gray, and see them in the root of the project:

12

This color mapping gives them the information they need, but they are still lacking
guidance. For that we want to create a codebase tour.

An interactive codebase tour is a guided tour of a codebase that walks a developer
through the codebase step-by-step for a particular function. For instance, if you are the
team lead on a code refactor, you could create a step-by-step tour through the codebase
showing the elements you think need work. Or it could be something as simple as taking a
new hire through how each component of the code interacts with others.

We can see the go.mod file that manages dependencies and go.sum with the checksums
for downloaded files. So just through thoughtful color-coding, we’ve helped an
onboarding developer a) find the main files they need to know about to get started with
the codebase, and b) understand their different functions within the codebase.

Create a Codebase Tour

What is an interactive codebase tour?

https://learn.codesee.io/using-tours-and-tour-alerts/
https://learn.codesee.io/divide-and-conquer-developer-onboarding-with-tours/

In this tour there are eight steps, taking the new developer logically through the
program

See that the main program calls the cli tool firs

The cmd package contains several files where each one refers to a Navio command

Here is the main code, where containers are created and execute

Provides images for cmd or containers packag

Create new Images using Naviofil

Stores all application constant

Create and configure the database. Creates the default image

Collection of utility packages

13

Codebase tours help further the goals of a codebase map: improved code understanding,
increased collaboration, better code maintainability, faster bug fixing, reduced
development time, and improved code reviews. But they take it a step further. By
providing a personalized experience, codebase tours can help developers to quickly and
effectively understand the codebase in relation to the role they are performing.

In our scenario, a codebase tour might look different for an onboarding junior developer
than an onboarding senior developer. Or it might look different for a new hire working on
the frontend to the backend. Codebase tours let you guide a user through your codebase
in a way that best facilitates their job, getting them the right information to be productive.

Here’s a sample tour from our earlier example:

Why should I create a codebase tour?

14

You can see how this corresponds to how an experienced dev might take someone
through the codebase in person. But here it’s all laid out for anyone to see and use. Build
once; use forever. This helps onboard new hires quicker, but also frees up time for the
experienced members of the team as well.

There are a huge array of ways to slice and dice your codebase tours. But here are
three that we recommend to start:

By team ownership. Each team can set its own tours and describe the journey
through the code that best fits the team's needs. How a frontend UX team sees a
codebase is going to be different from how a backend API team sees a database.
Tech leads on each team should be creating the right tours for their team members.

By developer level. Junior developers need different information than senior
developers. Throughout this guide we’ve been talking about onboarding. To use the
Remix example from earlier, an experienced Remix developer already knows about
routes and index.tsx. They don’t need that within their tour. But a junior developer
that might know JS but not Remix specifically will welcome an introduction to Remix
as an initial tour.

By feature. Tours can be as granular as needed, right down to individual tours for
individual features. You can have a tour showing the entry point for a feature, the
components it uses, all their dependencies, and how it uses data and API routes.
This helps new engineers understand features fast, but can also be used by support
engineers and PMs to help them understand internals, as well as helping senior
developers reason about the code.

Customize Your Codebase Tour

https://docs.codesee.io/docs/edit-your-map#tours

15

You can choose to share it with:

Select individuals through email
Your team on your GitKraken account
Everyone who has access to the particular GitHub repository
Everyone by making the map public

Then you can share the link in Slack or wherever with your team.

Finally, once you’ve created your map and tour it’s easy to share it. Head to ‘Share’ in the
top-right corner of you map and then choose the best option for you:

Share Your Map and Tour

https://docs.codesee.io/docs/share-your-map

16

Another option for sharing organizational knowledge is code automations. These are set
routines that fire anytime certain changes are made to the codebase. These triggers might
be when a specific file is changed, when new code is added, or when a PR is opened.

You can then add actions:

Add a comment to a pull request
Add a checklist item to a pull request
Assign a pull request to someone
Assign someone as a reviewer

For new developers, this might take the form of an automation that would alert new
developers that if their PR was complicated, they should make a tour:

Visuals aren't just helpful as a single point in time. You'll want visuals throughout your
development workflow, making onboarding seamless and more productive than ever.
Download the GitKraken VSCode extension to get review maps right in your editor.

Encourage your dev team and contributors to use review maps whenever they make a
complicated code change. Both of you can visualize how a code change impacts the rest of
the codebase or more specifically if you made that change, what else is connected to it.
Review Maps are like having an architect sitting next to you, telling you what's under the
hood. This speeds up your onboarding.

Use Review Maps When You Make
Code Changes

Write Code Automations to Share
Organizational Knowledge

https://marketplace.visualstudio.com/items?itemName=codesee.maps
https://docs.codesee.io/docs/review-map-guide

17

So in this case, we:

Set the Conditions as “Number of changed files” to “greater than or equal to” 10.
So if the new developer is changing more than 10 files within their PR, this
automation will be used.
Set the Actions as “Add to checklist” an entry to Make a Codebase Tour.

When they are drafting their PR, they can see this checklist item and add a codebase tour
for the reviewers. In this case, this isn’t just good onboarding, but accustoms the new
developer to using tours to describe complicated processes throughout their time on the
team. You can read more about code automations here.

https://docs.codesee.io/docs/triggers-overview

18

Getting started with codebase maps and tours for onboarding developers to your
codebases is a five-minute task

Set up GitKraken and integrate it with your GitHub repository.
Map out the different elements of your codebase so it’s easy for newcomers to
quickly see what’s what.
Add tour elements to your codebase to take a developer through the codebase
step-by-step.

You don’t have to be producing huge, multi-step tours initially, just something that
anyone new to your team can follow so they can get the code running on their local
machine and in a position to be effective. From there you can expand out to more
mapping techniques and more tours to help new and old developers alike.

Next Steps

https://docs.codesee.io/docs/getting-started

