
A Practical Guide to
Offboarding
Developers



1

3 Losses to Your Team When a Developer Leaves 

You lose all the knowledge that person had
You lose the context of decisions within your codebase
You lose the productivity from that developer and the
team they work with

Code Visibility Keeps Knowledge and Context in the Codebase

Where Code Visibility Can Help

Embed knowledge in code map
Adding context through tour
Use code automations to add messages and checklists
during the offboarding process.

A Better Offboarding Process

Losing team members is not fun. Whether it’s by choice as the developer moves on to
pastures new, or through the large layoffs we’re seeing right now around tech. For
engineering managers handling the offboarding, the priority is ensuring the remaining team
has the knowledge and context it needs to continue to be productive.

This hands-on guide walks you through how you can use code visibility and code
automation to manage the offboarding process and keep productivity high with the rest of
the team.

2

2
3
4

5

6

6
7
9

11

Summary

A Practical Guide to
Offboarding Developers



Losing a developer with deep knowledge creates significant challenges, especially if the
developer has been a key member of the team. When devs leave a company, the company
loses:

Technical skills and knowledge: The developer will take their technical skills and
knowledge with them and the proficiency in specific languages, frameworks,
libraries, and tools that the company uses.

Domain-specific knowledge: The developer will have specific knowledge about the
industry, customers, or users that the company serves. They may also have insights
into the company's unique challenges and opportunities.

Codebase knowledge: The developer will have an understanding of the company's
codebase, including architecture, design patterns, and coding standards. They may
know which parts of the codebase are well-maintained and which areas need
improvement.

Process knowledge: The developer will be familiar with the company's
development processes, including project management, quality assurance, testing,
and deployment. They may know which processes are effective and which ones
need improvement.

2

When a developer leaves, a manager’s first thought will be about the here and now– the
exact feature they are working on, this week’s sprint, or how you’re going to cover bugs or
support requests.

But losing team members means much more than the immediate work impact. This person
has been enmeshed in your organization, your team, and your codebase, maybe for years.
They’ve built up knowledge not just of the product, but the codebase, the architecture, the
processes, and the system. It’s a definite “never send to know for whom the bell tolls”
moment.

They take with them all the implicit knowledge and the context for that knowledge, as well
as impacting the productivity of your team.

3 Losses to Your Team When a
Developer Leaves

1. You lose all the knowledge that person had



3

Tribal knowledge: The developer may have institutional knowledge that is not
written down or documented, such as unwritten rules, tips and tricks, or
workarounds.

Each of these will impact the company at different levels. Technical knowledge is often
quickly replaceable, but domain, codebase, or process-specific knowledge isn’t. It’s only
learned over time within your organization. If someone takes this with them when they
leave, they are taking a big part of your organization with them.

It’s not just the specific knowledge that you lose with the developer. It’s also the
reasoning and context behind design decisions and code implementations that’s lost.
Context here could be:

the goals and objectives of the project. Ideally these are well-documented, but
there are always uncodified objectives for a project that are known just to the
developers.

the constraints and limitations of the tech stack. Tech stacks get chosen for
myriad reasons. If a developer pushed for a certain framework then left, it can
easily be lost why it was chosen, and the problems it was causing.

the preferences and opinions of the team. These are never written down in official
documentation, but they give you an understanding of why choices were made in
the design and build processes.

the history of the project. You can sometimes piece this together from commit
history, but when developers leave, you lose the ability to tell the whole story of
your project.

This leads to confusion and misinterpretation of the code, especially if the company has
not been proactive about documenting and sharing information.

2. You lose the context of decisions within
your codebase



4

Even though you are just losing a single developer, this has ramifications for the entire
team. Productivity may decline team-wide when a single developer leaves a company
because:

Increased workload: When a developer leaves, the remaining team members may
have to take on additional work to cover the gaps. This can lead to increased stress
and burnout, which can impact productivity.

Communication breakdowns: The departing developer may have been a key
communicator or liaison with other teams, or even customers. Without this person,
communication may become more difficult, leading to misunderstandings, delays,
and other issues.

Disruption to team dynamics: Developers often have close working relationships
with their colleagues. When one member of the team leaves, the dynamics of the
team may shift, leading to a period of adjustment and reduced productivity.

Rebuilding processes: If the departing developer was a key member of the team,
the team may need to rebuild some of its processes, such as code review, testing,
or deployment. This can be a time-consuming and disruptive process.

Losing a single developer can have ripple effects throughout the entire team. It's worth
noting that the extent of the productivity decline will depend on the specifics of the
situation. The impact will be more significant if the departing developer was a team lead or
the only person with expertise in a critical area.

3. You lose the productivity from that
developer and the team they work with



5

“GitKraken gives me more visibility into what code is responsible for
what parts of the product.”

Ryan
Senior Engineer, Stripe

Code visibility is the ideal way to deal with offboarding a developer. Code visibility
allows you to document everything they know in a way that allows them to keep their
knowledge and context close to the code, and nudges them to remember all that tribal
and tacit knowledge and pass it on to the remaining developers.

It also takes the stress out of the process for the developer and the engineering
managers:

For the developer, it allows your offboarding engineer to add their knowledge and
context directly to the code. It helps them organize what they know so nothing is
forgotten. It means that their offboarding process is simplified as they aren’t
updating numerous documentation or having dozens of calls with other developers.
Instead they are creating walkthroughs of the codebase from their perspective.

For the managers, it means you can set out a clear process for offboarding.
Everything is coordinated in a single place, close to the codebase. You and the
remaining team members can clearly see what has been added by the departing
developer and what still needs to be added. It lets you keep knowledge/context
permanently in a single place that you can share with anyone in your organization.

For the company, it means you can offboard quicker and lessen the impact on your team.
The team can work on more important things. It also helps when replacing the departing
team member, as an offboarding tour can become an onboarding tour for new developers.

Code Visibility Keeps Knowledge
and Context in the Codebase

https://learn.codesee.io/what-is-code-visibility/


6

“GitKraken allows Distribute Aid to implement relay-style code handoffs.
Everyone is up to date, and we can maintain our momentum without
burning out our volunteers.”

Taylor
Co-Founder, Distribute Aid

There are three main ways you can use GitKraken and code visibility to offboard
engineers.

Sometimes constant offboarding is a factor of the business model. At DistributeAid,
volunteers work on the codebase, and cycle in and out constantly. Volunteers leaving
DistributeAid need to make sure their knowledge and context are passed on to the next
cohort. As Taylor, co-founder of Distribute Aid told us:

Code maps allow you to visualize your codebase. Your developers can see how files,
functions, and modules interact. Code maps act as the base for tours, but can be used by
an offboarding developer to describe the codebase at a higher level.

Let’s say the developer has been working on technical debt in this codebase and needs to
pass on their knowledge to the wider team or the next developer. They can color code
each file or directory to show what needs to be done:

Where Code Visibility Can Help

1. Embed knowledge in code maps

https://www.codesee.io/customer-success
https://app.codesee.io/maps/public/187c5860-8a03-11ec-8af3-3b41e79d0548?_ga=2.98847191.814343337.1673287961-481960309.1666112105


7

In this case, the departing developer is showing some of the tasks that still need to be
completed: listing tests, breaking up files, TypeScript conversions, and logging. The Tech
Lead can then assign each of these tasks to different developers on the team, or prep
these jobs for an incoming developer. It also sets up the conversations between the
departing developer and the team. For instance, the offboarding developer might have
good insight or processes for converting JS to TS that it would be great to share with the
team.

When more time is available, getting a departing developer to add codebase tours allows
them to add context to the knowledge.

Let’s say the developer leaving is the team expert on Redux. In this tour they create a
number of different steps showing how Redux is organized and works:

2. Adding context through tours

https://app.codesee.io/maps/public/11316000-5871-11ec-b575-7b77230fbcd0?_ga=2.100385239.814343337.1673287961-481960309.1666112105


8

This type of tour can be used in two ways

Synchronously, where the developer gives a team-wide talk as they walk through
the steps and answer any questions the team has

Asynchronously, as this continues to be available to the team and any other new
team members after the developer has left.

In this case, the tour is for the developers' peers, other developers. But you could also
have tours for junior developers, showing the basics of the codebase or the best way to
get started:

https://app.codesee.io/maps/public/f5dcb920-ee8f-11ec-a5b3-bb55880b8b59?_ga=2.87385297.814343337.1673287961-481960309.1666112105


9

And you can have tours for managers, potentially showing current bottlenecks in the
codebase or where refactoring can help:

Offboarding is a process. If either the leaving developer of the lead managing the process
misses something, it can have an impact on the whole rest of the team and productivity for
a long time. You can manage the whole process through code automations to continue to
center the offboarding around the codebase.

Using code automations, you trigger comments, checklists, and specific reviewers when
changes are made to the codebase. As a developer in leaving and wrapping up their work,
you’ll want to make sure everything is assigned to current team members for the future,
and that these people have the knowledge and context to continue the work:

3. Use code automations to add messages and
checklists during the offboarding process

https://app.codesee.io/maps/public/91eef7f0-5a34-11ed-b88b-a52d208f5f9e?_ga=2.157443315.814343337.1673287961-481960309.1666112105
https://docs.codesee.io/docs/triggers-overview


10

So we set the Conditions as “Number of changed files” to “greater than or equal to” 10. So
if the new developer is changing more than 10 files within their PR, this automation will be
used. Then we set the Actions as “Add to checklist” an entry to Make a Codebase Tour
and Add assignee and tag the new developer.



11

Leaving is tough on everyone. It’s even tougher when there aren’t good processes in place
to handle it.

When processes are broken, the developer leaving can feel rushed and pulled in a hundred
directions as they fill in documentation everywhere and get on calls to explain all their
code and decisions. And they’ll walk out the door feeling they still haven’t helped their
former team enough.

When processes are broken, managers are left scrambling to get as much out of the
departing developers head as possible before their time is up, which leaves everyone with
a bitter feeling.

But done right, with the knowledge and context of the developer kept close to the
codebase using maps, tours, and automations, and the process can run smoothly. Both
developer and managers can get what they need out of the process: the new developer
can go to their next position free of any burden, and the remaining team can still use their
knowledge to build great products.

A Better Offboarding Process


